
1 INTRODUCTION 

Digitalization in the Architecture, Engineering and 
Construction (AEC) industry has opened a new field 
of research that focuses on developing computerized 
solutions to real-world problems that do not arise with 
traditional ways of conveying building information. 
Building Information Modelling (BIM), a key aspect 
of digitalization in AEC, adds enormous value in 
planning, design, construction, maintenance, and 
other processes throughout the entire building lifecy-
cle. Through the past decade, graph theory and algo-
rithms from the fields of mathematics and computer 
science have matured to the point where graph tech-
nologies have great potential to represent and operate 
on building information from BIM models, enabling 
advanced applications beyond what current BIM can 
offer.  
A key use-case of graphs in BIM is the knowledge 
graph representations of building models in the con-
text of the Semantic Web for efficient information ex-
change. The Semantic Web, devised by Berners-Lee 
et al. (2001), is an extension of the World Wide Web 
that aims to make information on the web not only 
human-readable but also machine-understandable. 
Linked Data is a concept within the Semantic Web 
(Berners-Lee, 2006), in which structured web data ex-
pressed in Resource Description Framework (RDF) 
are interlinked with each other, enabling semantics 
from different domains to be related. These 

technologies have been recognized as a promising 
foundation for representing multidisciplinary build-
ing information on the web, making them transparent 
and accessible to every project stakeholder. 
To address the holistic picture of multi-domain col-
laboration in AEC, where data representations are not 
limited to RDF graphs, investigations have been 
made into federated Common Data Environments 
(CDE) that act as hubs to host heterogeneous infor-
mation from different domains (ISO, 2018). RDF 
graphs and supplementary data in their native formats 
can be inter-linked and shared on a CDE, to which 
every project participant has access. Beyond its orig-
inal intent of sharing information, we propose to fur-
ther explore the potential of the data made available 
in CDEs for semantic enrichment, especially consid-
ering that data from multiple disciplines can now be 
utilized for a single enrichment task. Semantic enrich-
ment is the process that adds meaningful semantics to 
a digital building model by applying artificial intelli-
gence (AI) techniques (Belsky et al., 2016). This pa-
per aims to demonstrate the feasibility of automating 
the association semantic enrichment task on federated 
BIM models hosted in a Linked Data CDE.  
We first give an overview of the course of develop-
ment of graph representations and applications in the 
context of BIM. Next, we present our implementation 
of a CDE in which multi-disciplinary building seman-
tics in RDF are stored alongside with the object ge-
ometries to cater for the subsequent semantic 

Semantic Enrichment of Object Associations Across Federated BIM 
Semantic Graphs in a Common Data Environment 

B. Ouyang, Z. Wang, R. Sacks 
Seskin Virtual Construction Lab, Faculty of Civil and Environmental Engineering, Technion – Israel Institute 
of Technology, Haifa, Israel 

 
 

 

 

 
 
ABSTRACT: Explicit association semantics across federated BIM models facilitate the interoperability be-
tween design systems and open opportunities for intelligent applications. However, the automated inference 
and generation of such semantics remains a key challenge. Graph representations of BIM models have shown 
potential in supporting semantic enrichment and conveying formal building semantics across domains. In this 
paper, we present our implementation of a semantically-enriched Common Data Environment – the Graph-
based Core-extension Data Framework – composed of a semantic graph layer and an object geometry extension 
layer, hosting the heterogeneous information from BIM models. A novel rule-based inferencing approach, the 
TIOC algorithm, was implemented on the federated building representations to infer and establish inter-domain 
topological and correspondence relationships, interconnecting disjoint domain specific graphs with meaningful 
formal semantics. This study is the first known attempt to implement a semantic enrichment algorithm for 
implicit object associations in the context of multidisciplinary models. 



enrichment task. The procedure and reasoning of the 
entire semantic enrichment process on graphs is ex-
plained in detail in section 4. Finally, the paper con-
cludes with a discussion about the possible applica-
tions that could be built on top of the enriched model 
representations, as well as steps for upcoming re-
search to perfect the presented pipeline. 

2 RELATED WORK 

2.1 Semantic Enrichment on BIM Graphs 

Existing BIM software can only process explicit in-
formation, and the lack of semantics leads to interop-
erability issues (Sacks et al., 2018). Two types of se-
mantic information in BIM were classified by Xue et 
al. (2018), including information for an individual ob-
ject and relationships between objects. Bloch & Sacks 
(2020) identified four basic semantic enrichment 
tasks, including classification, calculation, associa-
tion, and creation, which could also be branched into 
1) enrichment of information for individual objects or 
aggregations of objects, and 2) enrichment of object 
relationships. 
For the examples of semantic enrichment on BIM 
graphs, a pioneering work from Collins et al. (2021) 
applied Graph Convolutional Neural Networks on ob-
ject geometry graphs to classify their object types. In 
this study, each graph represents a BIM element in-
stead of a BIM model. Shortly after, Wang et al. 
(2021, 2022) constructed the first BIM graph dataset 
that registered apartment layouts, and proposed an 
improved graph neural network algorithm, SAGE-E, 
to predict the unlabeled room types. The results 
showed better prediction accuracy compared to ex-
periments that adopted traditional machine learning 
approaches on similar tasks (Bloch & Sacks 2018).  
However, these works encounter the problem of gen-
eralizability and scalability, as the graph datasets are 
mostly created from the BIM models according to 
rules defined by the authors, and the products are only 
tailored to the specific use-cases. More importantly, 
previous semantic enrichment research are limited to 
BIM object classifications that relate to single BIM 
objects, while the enrichment of object relationships 
(the association task) remains largely unexplored.  
On the other hand, researchers realized the need for 
such association semantics for enabling BIM intelli-
gent applications. Törmä (2013) presented the idea 
that, with individual BIM objects from different par-
tial models linked, intelligent functions like change 
management, cross-model information access, status 
monitoring, etc. can be realized. Similarly, Pauwels 
(2014) argued that when models are linked with inter-
domain semantics, information exchange and man-
agement can be improved to facilitate decision-mak-
ing in the BIM lifecycle. Both studies identified the 
need for inter-domain semantics, but their results are 

conceptual, with no validation of implementations to 
enrich such association relationships automatically. 

2.2 Knowledge Graphs in the AEC Industry 

Törmä (2013) and Pauwels (2014) introduced the idea 
that knowledge graph representations may serve as 
the technical foundation for expressing association 
semantics between concepts and objects across do-
mains. Development of the ifcOWL ontology, a Web 
Ontology Language representation of the IFC EX-
PRESS schema, was a milestone achievement in this 
field (Pauwels & Terkaj 2016). Recognizing that the 
excessive complexity inherent in the full IFC-RDF 
representation prevents any practical application 
(Pauwels & Roxin 2017), subsequent researchers 
have aimed to develop better knowledge graph repre-
sentations from IFC models that are simpler, more ex-
tensible, and more modular (Pauwels et al., 2022). 
These works, led by the W3C LBD community 
group, contributed to the development of modularized 
ontologies, including BOT (M. H. Rasmussen et al., 
2020) as the core, plus a series of purpose-specific ex-
tensions. The dedicated IFCtoLBD converter allows 
conversion of IFC models into RDF Abox graphs 
structured according to the ontologies defined under 
the LBD ecosystem (Oraskari, 2022). 
An RDF graph may not be the most appropriate data 
storage format for all types building information. 
Nevertheless, research in this field opens a new way 
for building information to be communicated across 
domains transparently. Semantics can now be ex-
pressed within and across domains in a formal lan-
guage, along with ontologies that schematize the way 
knowledge is expressed.  

2.3 Common Data Environment 

Much work has also been done to investigate data ex-
change in the complex real-world scenarios of multi-
disciplinary collaboration. Here, given the federated 
model approach, heterogeneous information packets 
in various forms are exchanged among multiple pro-
ject participants, and the need for a central digital 
platform with regulated collaborative procedures is 
well recognized. To address this issue, the concept of 
Common Data Environment (CDE) was devised as a 
“common digital project space which provides well-
defined access areas for the project stake-holders 
combined with clear status definitions and a robust 
workflow description for sharing and approval pro-
cesses” (Preidel et al., 2015) and the procedures of 
managing CDEs were formalized in ISO 19650 (ISO, 
2018). 
Recently, an interesting research thrust demonstrated 
the possibility of a Linked Data-based CDE, bringing 
together the benefits of both technologies (Malcolm 
et al. 2021, Werbrouck et al. 2019, 2022). Such an 
implementation would allow heterogeneous building 



information in different forms to be linked to the RDF 
layer that captures core building semantics, and this 
can be realized at object-level granularity. Multiple 
mentions of semantic enrichment appear in these 
studies. In the most recent work (Werbrouck et al., 
2022), an exemplifying semantic enrichment task was 
provided as part of the case study, demonstrating the 
user-initiated manual documentation process of a 
newly discovered incidence of damage to an object, 
illustrating how the information was made available 
to all through linking with other models. Although 
one might argue whether that particular example can 
be regarded as a semantic enrichment task according 
to its canonical definition (Belsky et al., 2016), which 
stipulates automation of the process, it undoubtedly 
focused attention on the potential of such an inte-
grated data repository in facilitating the generation 
and representation of new semantics. 
To date, information in a CDE is mostly shared and 
utilized ‘as-is’. Applications that use CDEs are rather 
predictable and straightforward compared to those 
demonstrated with the application-specific graphs. 
Current research focuses on improving the frame-
work for data representation and sharing on the theo-
retical level, but without human intervention, infor-
mation richness can go only as far as what the original 
BIM model contains. 

2.4 Gaps in Knowledge 

Research related to the association of BIM objects in 
the context of semantic enrichment is scarce. There is 
reason to believe that, with the abundant multidisci-
plinary data made available by a CDE, AI applica-
tions of various forms can be deployed to facilitate 
the automated reasoning and inference of new 
knowledge, especially when it comes to the implicit 
semantics between objects across federated models. 
Enriched information can be explicitly expressed and 
appropriately shared between stakeholders using 
Linked Data approaches to provide access to every 
project participant. 

3 CDE FOR SEMANTIC ENRICHMENT 

RDF graphs facilitate the expression of associations 
between BIM entities, but as mentioned before, it is 
not the most convenient format for storing all types of 
building related data. For example, buildings could 
have sensors that collect data through time, which 
suggest the need for dedicated time-series manage-
ment systems (Jensen et al., 2017). Exact geometries 
are another exemplifying type of data that cannot be 
efficiently represented in RDF graphs (Pauwels & 
Roxin, 2017). Moreover, even for data that can be ef-
ficiently represented as graphs, they are not equally 
important in terms of the frequency with which they 
will be accessed. Storing them all in graphs would 

increase the size of the graphs and potentially impair 
retrieval speed. Extracting those data can help to keep 
the core graph concise. A possible solution is to save 
non-graph data and less essential data independently 
outside the graph but with virtual links to connect 
them to the core graph.  
For these reasons, we present in Figure 1 the Graph-
based Core-extension Data Framework as our imple-
mentation of a CDE. The core LBD graph layer in-
cludes BIM elements, object relationships and direct 
object attributes in RDF format. The extension layer 
stores BIM-related resources in open schemas with-
out format limitations. Virtual links between the 
graph and extension layer (yellow dashed lines) are 
generated and stored as attributes to the BIM element 
nodes. For example, the exact geometry of a wall 
compiled to a PLY file will be stored in the extension 
layer. The path or URL through which the file can be 
accessed is stored as an attribute of the wall node and 
serves as a virtual link. 
The new data framework provides a flexible basis for 
the complete and efficient storage of all kinds of 
building information. Moreover, the availability of 
data makes it ideal for deployment of semantic en-
richment applications.  

4 ASSOCIATION SEMANTIC ENRICHMENT 

This section explains and details the semantic enrich-
ment procedures shown in Figure 2. The pipeline has 
three stages. Section 4.1 deals with data preparation, 
during which each IFC partial model is compiled into 
a raw subgraph and stored in the core graph layer as 
the basis for the subsequent enrichment. Section 4.2 
discusses the construction of the CDE, where object 
geometries within each model are supplemented to 
their respective raw graphs to complete the represen-
tations. Section 4.3 considers the inference and 

Figure 1. Graph-based Core-extension Data Framework. 



enrichment of inter-domain association semantics, a 
step that adds relationships between objects across 
disciplines, making design intents explicit. In the last 
section, we present a case study as a validation of this 
workflow. 

4.1 Data Preparation 

The semantic enrichment pipeline begins with the 
federated architectural and structural BIM models of 
a given project, assuming they are well coordinated 
and aligned. Correct placement of the model objects 
in global coordinates is critical to the subsequent 
workflow. The IFCtoLBD converter (Oraskari, 2022) 
converts IFC models exported from BIM authoring 
tools into LBD graphs in RDF formats. Initializing 
the core graph layer involves loading these LBD-
based subgraphs as model representations for each 
domain into the graph database, which in our case is 
GraphDB (2021). Upon successful establishment of 
the database, all remaining workflows use direct com-
munication of the local Python environment with the 
database’s endpoint. The SPARQLWrapper (2022) li-
brary was used to establish this connection, allowing 
query and update requests to be sent to the database 
in the form of SPARQL scripts. 
The storage of domain subgraphs in the database fol-
lows the Named Graphs data model. As an extension 
of the original RDF data model, the Named Graphs 
approach gives each RDF subgraph a unique identi-
fier, allowing properties like metadata to be assigned 

on the graph level rather than node level only. In our 
use case, such metadata might include information 
like model creator, creation date, authoring software, 
accessibility, etc., all of which are essential for data 
management in the collaborative design environment. 
Moreover, this approach aggregates the subgraphs el-
egantly by allowing information from one subgraph 
to be accessible from the others through referencing 
the unique identifiers, while at the same time preserv-
ing the federation structure of the subgraphs so that 
each can be maintained and manipulated separately. 
This is an important feature for our subsequent se-
mantic enrichment since the enriched relationships 
can be stored and managed externally to the domain 
subgraphs. We call this the ‘CBIM’ (Cloud BIM) 
Graph. 

4.2 CDE Construction 

As mentioned, geometry is one of the key features of 
building objects for determining their relationships 
with other objects, yet this information is lost during 
the conversion to LBD graphs. Once the graph data-
base is set up, the first step towards global semantic 
enrichment is to supplement the missing geometry in-
formation for each subgraph in a CDE approach. 
The GUID of every building object in each subgraph 
is extracted for locating the corresponding IFC object 
in the original IFC models. Then, using the geom 
module from the IfcOpenShell library (2022), the ge-
ometric representation of each object, with its 

Figure 2. Pipeline of the semantic enrichment workflow on graphs. 



placement in the global coordinate system, can be 
processed and converted into a raw triangulated 
mesh, on which various analyses can be performed 
with third-party mesh processing libraries. Among 
many other features, trimesh (Dawson-Haggerty et 
al., 2019) provides a toolset for exporting such in-
memory mesh geometries to standard PLY files and 
for generating their axis-aligned bounding boxes. We 
encode the defining parameters of the bounding box 
and the directory of the exported PLY file as strings 
and attach them to the building object node as new 
properties. The bot:hasSimple3DModel  and 
fog:asPly relations are datatype properties adopted 
from the existing BOT Ontology (M. H. Rasmussen 
et al., 2020) and FOG Ontology (Bonduel et al., 2019) 
suitable for linking the simplified and exact geometry 
encodings. The reason for storing the dual represen-
tations derives from considerations of computation 
efficiency, and will be discussed later. 

4.3 Inter-domain Association Semantic Enrichment 

Following the preliminary enrichment of object ge-
ometries comes the actual enrichment of inter-domain 
relationships across the subgraphs, utilizing all infor-
mation available from the graph database and the ex-
tension repositories. The enrichment process involves 
the sequential generation of three types of cross-do-
main relationships from the CBIM ontology (as pro-
posed in (Sacks et al., 2022)): the correspondence of 
building storeys, the spatial relationships between 
building elements, and their inferred correspondence. 
Here, we define corresponding objects (or aggrega-
tions of objects) as objects that are functionally equiv-
alent in a physical building. As such, correspondence 
should exist between cross-domain objects that give 
identical functionality, or between intra-domain ob-
jects (or aggregations of objects) if they are mutually 
exclusive alternatives. In this paper, the degree to 
which two objects overlap geometrically in the 3D 
space is regarded as the primary factor in evaluating 
their correspondence. 
Here, we propose a rule-based algorithm named the 
Topology-based Inter-domain Object Correspond-
ence test algorithm (TIOC algorithm), summarized in 
Figure 3. The core idea is the following. For every 
input object pair, a computation of the clear distance 
between their bounding box encodings is performed. 
If they are in proximity, defined as a pre-set distance 
threshold, a CBIM:RelSpatial node that registers the 
computed topological properties between the two 
bounding boxes is generated. Since overlap of the 
bounding boxes is a necessary but not a sufficient 
condition for the exact geometries to be in contact, the 
algorithm then filters for object pairs that have a zero 
clear distance registered and performs a Boolean in-
tersection check (a function available in trimesh) on 
their PLY exact geometries retrieved from the 

Figure 3. The TIOC algorithm. 



extension layer. The results, specifying whether the 
objects are indeed in contact, are recorded to the 
CBIM:RelSpatial node. If true, the procedure checks 
in parallel the geometries of the two entities and their 
overlapping part, as well as other features extractable 
from the core graphs, against a set of predefined rules 
that encapsulate expert knowledge for correspond-
ence judgement. If all the conditions are satisfied, an 
explicit CBIM:correspondsTo relationship is estab-
lished between the two object nodes. 
For sake of computational efficiency, we imple-
mented a preliminary mapping of the building stories 
across models based on the storey elevations, assum-
ing they have one-to-one correspondence. Potential 
nuances in the elevations of the architectural and 
structural storeys can be taken care of by wisely set-
ting the tolerance, which is another example of expert 
knowledge encapsulation. In this way, the search 
space can be significantly reduced by specifying that 
only objects from matching storeys are to be checked 
for spatial and correspondence relationships. 

4.4 Case Study 

Given the step-by-step explanation of the technical 
details above, the enrichment pipeline was validated 
using a set of federated BIM models retrieved from 
Autodesk’s sample Revit model repository. The ar-
chitectural model of a technical school and its corre-
sponding structural model were used. The Revit mod-
els were each exported as IFC files, converted to LBD 
RDF graphs, loaded into GraphDB, supplemented 
with object geometries, then semantically enriched. 
To illustrate the semantic enrichment process, we 
zoom into one of the columns located on the 3rd floor, 
at the south-west corner of the building (see Figure 
4). The same column appears in both the architectural 
and the structural models, and when overlaying the 
two models together, the columns overlap in most of 
their volumes. When comparing the models side-by-
side, any professional engineer can infer that the two 
column objects represent the same physical column in 
the real-world building, and hence should be consid-
ered as corresponding to one another. Figure 5 
demonstrates how this kind of implicit association in-
formation was made explicit after the three-stage en-
richment process.  
First, the equivalence between the architectural and 
the structural storeys was deduced and established 
during the pair-wise exhaustive search over the storey 
objects from different subgraphs. Following that, an 
exhaustive search was performed over the building 
objects belonging to each pair of equivalent storeys, 
during which new CBIM:RelSpatial objects were 
generated whenever the bounding boxes of the pairs 
of building objects were found to be in close proxim-
ity (relative to a predefined threshold). In the example 
shown, the columns have overlapping bounding 

boxes in all three projections X, Y, and Z, indicating 
that they may be in physical contact. This triggered a 
computation on the exact geometries retrieved from 
the extension layer, which revealed that the two col-
umns are not only in contact, but overlap to a great 
extent. Upon further testing the two column instances 
against predefined rulesets that use their non-geomet-
ric properties, such as object type, name, and their 
class identifiers, the algorithm deduces that the col-
umns indeed correspond to one another. The enriched 
information is supplemented back to the graph. 
Snippet 1 shows a fragment of the TriG file exported 
from GraphDB that depicts the part of the graph rele-
vant to the described column example. The supple-
mented geometry information is stored in the 

Figure 4. Corresponding columns from the architectural BIM
model (above) and the structural BIM model (below). 

Figure 5. Association semantic enrichment results viewed in
GraphDB. The enrichment proceeded in the indicated sequence.
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architecture and the structure named graphs respec-
tively, in the form of new datatype properties to the 
building object entities. On the other hand, the new 
association semantics are stored in the CBIM Graph, 
including the topological relationships between the 
building objects, as well as their inferred correspond-
ence relationships that explicate the design intents. 

https://example.org/domains/architecture 

arc:storey_217b4731‐b297‐4fb8‐9e93‐e43ee72f3cb9 a bot:Storey ; 
bot:containsElement  

arc:column_faac21ea‐ccd4‐4796‐a103‐137652987219 ; 
         
arc:column_faac21ea‐ccd4‐4796‐a103‐137652987219 a beo:Column, 

beo:Column‐COLUMN, 
bot:Element ; 

fog:asPly 
"arc_geom/faac21ea‐ccd4‐4796‐a103‐137652987219.ply" ; 

bot:hasSimple3DModel  
    "‐9352.0, ‐22785.0, 7600.0, 300.0, 300.0, 3800.0" . 
... 

 

https://example.org/domains/structure 

str:storey_e5c3c912‐80ce‐4e47‐8a5f‐ec197cf1b30f a bot:Storey ; 
bot:containsElement  

str:column_9e343347‐e3b6‐48ba‐89a5‐94b31bdfd30e, 
     
str:column_9e343347‐e3b6‐48ba‐89a5‐94b31bdfd30e a beo:Column, 

beo:Column‐COLUMN, 
bot:Element ; 

fog:asPly 
"str_geom/9e343347‐e3b6‐48ba‐89a5‐94b31bdfd30e.ply" ; 

bot:hasSimple3DModel  
    "‐9427.0, ‐22860.0, 7600.0, 450.0, 450.0, 3400.0" . 
... 

 

https://example.org/domains/CBIM 

arc:storey_217b4731‐b297‐4fb8‐9e93‐e43ee72f3cb9  
CBIM:equivalentTo 

str:storey_e5c3c912‐80ce‐4e47‐8a5f‐ec197cf1b30f . 
 
CBIM:RelSpatial_37de1833‐79c5‐4118‐9044‐cf9b44fc83a8 a  

CBIM:RelSpatial ; 
CBIM:hasSubject  

arc:column_faac21ea‐ccd4‐4796‐a103‐137652987219 ; 
CBIM:hasObject  

str:column_9e343347‐e3b6‐48ba‐89a5‐94b31bdfd30e ; 
CBIM:topology  

"CONTAINED_IN, CONTAINED_IN, CONTAIN" ; 
CBIM:offset "0, 0, 0" ; 
CBIM:inContact true .  

 
arc:column_faac21ea‐ccd4‐4796‐a103‐137652987219  

CBIM:correspondsTo  
str:column_9e343347‐e3b6‐48ba‐89a5‐94b31bdfd30e . 

Snippet 1. TriG fragment for the case study graph. 

5 DISCUSSION 

5.1 Applications of the Enriched Semantics 

In an early application, Le & Jeong (2016) demon-
strated that linking data from different sources can 
support decision-making in highway management 
when used in combination with graph query and rea-
soning techniques. Moreover, Törmä (2013) claimed 
that cross-domain change maintenance can be 
achieved on the linked graphs, which to-date has not 
been implemented. One of our ongoing experiments 
is to test the feasibility of such a function on the 
linked multidisciplinary building semantic graphs. 
Specifically, we envisage that when one participant 
makes a change to an element in a specific partial 

model, this information would be propagated through 
the established CBIM:correspondsTo relationships to 
the related BIM entities in other domains. Accord-
ingly, these elements should be updated in the corre-
sponding federated graphs, then in their native BIM 
software. Naturally, this would require discipline-
specific bi-directional communication between the 
graph database and the BIM authoring tools. 

5.2 Richer Semantics 

In this research, we have demonstrated the feasibility 
of the proposed semantic enrichment pipeline with 
the CBIM:correspondsTo relationship, which is a rel-
atively simple semantic between any pair of objects. 
More thorough research is needed to discover the 
pool of inter-domain object semantics and to develop 
appropriate methods to instantiate them. For example, 
to implement the change maintenance function men-
tioned above, one may realize the need for explicit 
constraint relationships between the objects to make 
their intended interactive behaviours under the dy-
namically changing design environment explicit. 
Whenever a violation of a constraint is detected as a 
result of a design change from one party, the CBIM 
system will be triggered and react accordingly to alert 
other users and to restore integrity.  
The CBIM ontology can also be extended by other 
ontologies to unlock more functionality. For example, 
incorporating the OPM ontology (M. Rasmussen et 
al., 2018) would enable the tracking of design prop-
erties through time, bringing in features like design 
alternative management and version control that are 
essential for a fully functional multi-disciplinary de-
sign coordination system. 

5.3 Connectors between BIM editors and CDE 

As no BIM editors to date support the direct export of 
graph models natively, the current workaround solu-
tion is to convert the BIM models first to IFC files and 
then to LBD graphs. Manual operations are still an 
integral part of the workflow, making it sub-optimal. 
Some third-party plugins that export models from 
Revit to LBD graphs within the software interface do 
exist in academia (Pauwels, 2020; Tchouanguem 
Djuedja et al., 2021). However, such tools 1) ignore 
the non-semantic information (like geometry) con-
tained in the model, and 2) export information in 
batches, which cannot capture the dynamically 
changing behaviour within the design models. 
A better approach would be to devise connectors that 
directly connect BIM editors to the vendor-neutral 
graph CDE, so that both semantic and non-semantic 
information from the native models can be composed 
into their appropriate representations and linked in the 
CDE. All these should happen in real time, automati-
cally. This too is the subject of ongoing work. 



6 CONCLUSIONS 

This paper presents a novel algorithmic approach to 
enrich the association semantics among federated 
BIM models hosted under a Linked-Data based Com-
mon Data Environment. A case study showcasing the 
dual representation of a column in federated design 
models was used to validate the presented approach. 
The algorithm successfully captured and established 
the correspondence relationship between the column 
entities from distinct model representations, making 
the association explicit to all project participants. This 
is the first known study that demonstrates the feasi-
bility of automatically associating multidisciplinary 
building models at object levels. 
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