
1 INTRODUCTION 
Building Information Modelling (BIM) has provided 
a technological solution to facilitate collaboration 
among architecture, engineering, and design profes-
sions. It applies object-oriented modeling to enable 
users to enrich objects’ data and information, visual-
ize 3D, and analyze building performance models. 
Open BIM standards have been developed for in-
teroperability between diverse software applications 
by exchanging building information through the 
building life cycle. Thus, BIM has brought benefits 
to the design process in generating complicated 
building shells while expediting generation and 
evaluation of the concept design. In particular, BIM 
has provided new information workflows that share 
information among existing simulation and analysis 
tools by addressing engineering integration of a sole 
system or multiple systems based on shared data 
(Sacks et al. 2018). Nevertheless, generation of 
building performance models within the BIM plat-
forms is still neither fully integrated nor automated. 

One of the main issues is that different BIM ap-
plications and analysis tools have native models with 
different aggregating, identifying, and parametrizing 

objects (Bloch & Sacks 2018). Therefore, when ex-
tracting data from a building information model to a 
building performance model, the outcome is general-
ly delivered with inaccurate, incomplete, or false in-
formation. To address this kind of data integrity 
concern, ontologies have been proposed for storing, 
structuring, and visualizing knowledge, independent 
of heterogeneous and decentralized systems. Diverse 
research communities, such as computer science, 
engineering, decision science have adopted ontolog-
ical frameworks. Furthermore, these research groups 
have collaborated with international communities 
(e.g., (Linked Building Data Community Group 
2022, World Wide Web Consortium (W3C) 2022)) 
in accordance with the web of data, linked data, and 
semantic web technologies.  

Researchers in the building performance domain, 
which is a specialization within the AEC sector, 
have also adopted the ontological framework ap-
proach. Among the developed ontologies are build-
ing geometry (Wagner et al. 2019), topology (Ras-
mussen et al. 2021), smart applications and 
automation devices (Bonino & Corno 2008, Daniele 
et al. 2020, Reinisch et al. 2010), building systems 
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(Balaji et al. 2016), standard IFC data in the ontolo-
gy web language format, ifcOWL, (Pauwels & 
Terkaj 2016), and building energy modeling (Y. Li 
et al. 2019, Pauwels et al. 2014). The current build-
ing performance ontologies apply primarily to the 
energy domain and the integration of application-
specific intelligent devices in buildings. To date, 
there is no combined multidisciplinary building per-
formance ontology. 

Another main issue is that the current perfor-
mance simulation software tools have weaknesses 
and gaps in tool functionality, as well as a loosely 
tied-integrated simulation in all phases of the build-
ing process (Augenbroe 2002). To address this issue, 
previous work researchers have sought to implement 
an ontological framework for more intelligent appli-
cation services relying upon semantic web technolo-
gies and linked data (Corry et al. 2015, Curry et al. 
2013, Hu et al. 2016, 2018, Y. Li et al. 2019, 2021, 
O’Donnell et al. 2013). However, the implementa-
tion techniques still rely on conventional databases 
or the manual conversion of conventional databases 
to graph formats. A web-based distributed simula-
tion can be seen as a natural environment for build-
ing performance analysis. However, development of 
a common engineering representation that will pro-
vide the high-level architecture to share model com-
ponents is a major challenge (Augenbroe 2002).  

In summary, the current workflow of building 
performance modeling is recursive, semi-automated, 
and has poor interoperability among software and 
stakeholders due to the paucity of semantic contents 
and object relationships. The industry needs a future 
workflow that covers all building performance dis-
ciplines, automates the generation of the building 
performance models, and enables two-way infor-
mation exchange among the BIM models and differ-
ent building performance simulation tools. This im-
plies the need for an entirely new BIM platform 
paradigm for the performance domain. The follow-
ing questions arise: (1) What kind of platform para-
digm can represent the whole building performance 
analysis domain, in a generic intelligent model, as an 
alternative to the multiple divergent existing work-
flows? (2) How can this new paradigm automate the 
generation of the building performance models and 
the performance domain analytical models? (3) 
Could it automate two-way information exchanges 
among the generic building model and different 
building performance simulation tools?  

Consequently, this study proposes an ontological 
framework for a holistic building performance mod-
el with cloud and semantic web technologies. The 
novel paradigm encompasses an ontological frame-
work that will replace local file-based databases with 
extensible knowledge graph-driven systems (as data, 
information, logic, and design intent), with dynamic 
response and cloud storage. 

2 RESEARCH METHODOLOGY 

This study follows a design science methodology 
(Rossi et al. 2013), and this paper discusses the 
problem identification and objectives definition 
steps. It is an exploratory work on the future state-
of-the-art configuration, suggesting a solution to 
handle the limitations and issues of the current 
workflows in the AEC industry. As such, it proposes 
an innovative combination of processes and digital 
technology and a vision for the future. The remain-
ing steps (design, development, demonstration and 
experiment, validation, and evaluation) are part of 
ongoing work. The further study will serve as a 
proof-of-concept, seeking to demonstrate the novel 
paradigm's feasibility by examining the technical 
processes and the use of digital technology. 

3 BUILDING PERFORMANCE MODELING 
WORKFLOW IN THE NOVEL PARADIGM 

The novel paradigm proposed here imagines a radi-
cally changed building modeling workflow for all 
design stakeholders. Each design team will use a 
new generation of software tools, knowledge graph-
based, to model their discipline-specific models. 
When the design team begins creating their models 
in the graphical user interfaces of the new generation 
software, knowledge graphs will be generated auto-
matically in the background of these tools via their 
management systems using graph algorithms. Thus, 
discipline-specific designers will be able to compile 
their models as domain-specific knowledge graphs. 
The model view function in the graphical user inter-
faces (Fig. 1) will enable the design team to visual-
ize domain-specific knowledge graphs as 3D mod-
els.  

Each knowledge graph will contain an ontology 
covering domain class and attribution with semantic 
nets in the terminology box (Tbox) and instances of 
each class in the assertion box (Abox). Logical 
statements and rules will be appended to this ontolo-
gy. Thus, each knowledge graph will represent an 
expert system of a performance discipline, which 
supplies high-level internal representation. It will be 
possible to implement semantic web and linked data 
techniques on each knowledge graph for collabora-
tion and distribution of knowledge across different 
performance disciplines. The knowledge graphs 
cover the data, information, logic, design intent, and 
an appropriate level of detail (LOD) for building ob-
jects. The graphs will be stored in a cloud service, 
forming a holistic building performance knowledge 
graph database, which refers to an open architecture 
for modification, replacement, deletion, and exten-
sion. 

 



The new paradigm must incorporate and exploit 
information about design intent if it is to automate 
building performance modeling. Thus, reflecting the 
design intent in a new workflow is one of the main 
considerations. The design intent reflects experts' 
experience in problem-solving and their domain 
knowledge. This phenomenon has long been consid-
ered in research to develop expert and knowledge 
systems as well as intuitive and cognitive design. 
Eastman explained that a cognitive information-
processing model can be used to analyze intuitive 
design relating to the physical environment (East-
man 1968). In the architectural domain, Rosenman 
and Gero highlighted the potential of expert systems, 
which attempt to simulate human expertise, and of 
knowledge-based systems, which organize, catego-
rize, store, and recall facts, logic, and semantics 
from a knowledge base by knowledge engineering 
(Rosenman & Gero 1985). When knowledge sys-
tems capture what an expert knows, they become 
expert systems (Gero & Coyne 1984). 

Researchers have proposed expert and 
knowledge-based systems to encapsulate large vol-
umes of logical statements describing the design 
process. These systems have three main mecha-
nisms: (1) encoding knowledge in the form of facts, 
variables, and assigned values; (2) setting rules as 
logical statements among facts relationships; and (3) 
using inference mechanisms for examining and 
drawing facts (Papamichael & Selkowitz 1990). Ad-
ditionally, an automatic design production system 
was suggested as conveying information by imple-
menting an intelligent information management sys-
tem in obtaining, displaying, storing, retrieving, edit-
ing, interpreting, and reasoning with information. 
Seamless integration of the information in the data-
bases would be achieved through knowledge-based 
representations of information (Myers et al. 1992). 
There are two types of design intent knowledge: (1) 
explicit information, which can be modeled in 
knowledge-based systems by applying knowledge 
engineering, and (2) implicit knowledge, which de-
rives from experts' experience and can be inferred 
using cognitive information-processing models.  

Figure 1 depicts the workflows and the infor-
mation flows that characterise the new platform par-
adigm. It includes three knowledge graph database 
management system functions that perform three 
types of semantic enrichment processes with intelli-
gent functionalities to collectively deal with expres-
sion of design intent. These semantic enrichment 
processes are explained in the following subsections. 

3.1 Process 1: Classification of Building Elements 

The new generation of software libraries will collect 
building design and code compliance constraints 
(derived from laws, regulatory codes, standards, as 
well as user requirements) based on analysis of code 

provisions. Initially, building objects will be classi-
fied according to the concepts defined by the design 
codes or user design libraries. Then, a set of rules 
will be implemented to conduct semantic enrichment 
tasks based on concepts and properties. Design in-
tent and constraints based on object properties can 
be considered as introductory, and further semantic 
enrichment such as new concept creation and associ-
ation tasks will rely on the introductory step.  

As an example of this introductory step, fire safe-
ty regulations would have been identified with their 
concepts (i.e., occupant load, required capacity of 
egress path spatial component) and stored in the new 
generation software library (Bloch 2020). The door 
objects will be classified as an egress door or interior 
door based on criteria such as the door size, the at-
tached wall dimension, and connected space (interior 
or exterior); these are property classification seman-
tic enrichment tasks. This classification would be 
obtained via rule-based inferencing running in the 
background of the software. 

By applying knowledge engineering techniques to 
a knowledge-graph database based on the introduc-
tory design intent and constraints, geometries and 
spatial relationships based on the model objects will 
be initialized. Those spatial relationships will be 
added to the knowledge graph databases. As part of 
knowledge graph management system functionality, 
this process will diagnose any missing building ob-
jects, attributes, and design intents. The management 
system will notify users of missing objects and at-
tributes and ask them to edit the model. Should there 
be no missing design intent detected, the enriched 
knowledge graph generated by running the first pro-
cess will be stored and updated in the knowledge da-
tabase. 

3.2 Process 2: Identifying and Modeling Implicit 
Constraints 

The second process will make implicit constraints 
explicit using external knowledge, which might stem 
from previous projects or knowledge graph learning. 
Constraints added by applying rule-based or graph-
based machine learning will be checked for compli-
ance with building standards and regulations - where 
data from archived projects will be used for machine 
learning. The enriched knowledge-graph database 
will be used to query and apply artificial intelligence 
graph algorithms to perform domain-specific con-
sistency and property checking. 

As an example of consistency checking, in the 
building model, two walls meeting at a corner may 
be modeled without intersecting each other. The gap 
between corner walls may be insignificant in the ar-
chitectural model; however, this inconsistency will 
influence the subsequent performance analysis steps 
of building design. 
 



 
 
 
 

 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

 

 
 

 
 

Figure 1. Blueprint Building Performance Modeling in The Novel Paradigm 



The most common checking property example is 
for material assignment. If there is an unassigned 
material property in the building model, the check-
ing property algorithm will diagnose it. Once these 
algorithms find a piece of missing information and/ 
or inconsistency, the management system will in-
form users to edit the building model. 

3.3 Process 3: Model Consistency, Accuracy, and 
Integrity  

This process will simultaneously address inter-
domain consistency, accuracy, timeliness, and com-
pleteness. A consistency check will identify conflicts 
in the performance systems model. An accuracy 
check will examine the performance model require-
ments. A timeliness check will identify the versions 
of objects in the building model. If an object in the 
performance model is out-of-date, the management 
system informs users to update it. A completeness 
check will determine whether the created building 
performance model fulfills all design intents and re-
quirements. Once all processes represented in Figure 
1 are complete, a performance simulation will be run 
in the management system. 

3.4 Local and Cloud Service 

The building modeling workflow in a novel para-
digm will bring a new direction; however, generat-
ing the building performance models needs a new 
notation. The key points are: (1) the building model 
will need to represent the different building perfor-
mance disciplines from specialized systems; and (2) 
the building performance model must provide and 
integrate an appropriate degree of knowledge for ob-
jects that preserve domain-specific or application-
specific information from multiple knowledge da-
tasets. Thus, two more steps are required in the new 
generation building performance tools: a local ser-
vice system background and a cloud service, as rep-
resented in Figure 1.  

In the local service system background, the first 
step will be to access the building model knowledge 
graph in the cloud service. After accessing the build-
ing model knowledge graph, the objects, attributes, 
and design intent in it will be read. These accessing 
and reading tasks will run in the local service system 
background. 

To automate holistic building performance mod-
els (HBPM), semantic enrichment and performance-
specific functional modules will be shifted to the 
cloud service and implement the knowledge-graph-
driven technique that considers design intent and the 
gap between building physical models. In this con-
text, a management system based on the knowledge-
graph database of a holistic building performance 
model will be able to access individual knowledge 

graph databases of the new generation of software 
design tools.  

The HBPM management system, when it access-
es the domain-specific knowledge-graph database, 
will read objects, attributes, and design intents con-
tained in the domain-specific knowledge graphs. As 
a result of reading domain-specific knowledge 
graphs, the detected objects, attributes, and design 
intents will be appended to the HBPM as instances 
by using semantic web and linked data techniques. 
The semantic enrichment processes (processes 1-3 in 
the local service management systems functions of 
Fig. 1), will also be implemented in the cloud ser-
vice system functionality. 

To sum up, the suggested method converts the 
BIM models to a federated and semantically en-
riched knowledge graph covering the data, infor-
mation, logic, design intent, and an appropriate level 
of detail (LOD) for building objects, subsequently 
storing them on the cloud in a knowledge graph da-
tabase. The management and application systems 
function through this database. The essential func-
tions for the building performance models will be 
based on a holistic building performance ontology, 
implementing semantic enrichment via rule-based 
inferencing and machine learning. The method will 
replace file-based database systems with extensible 
knowledge graph-driven cloud storage for the next 
generation of software programs. 

4 ASPECTS OF IMPLEMENTATION 

The current building performance analysis and eval-
uation processes require the generation of applica-
tion-specific performance models in the framework 
of standalone or state-of-the-art BIM design and per-
formance software tools. To try to achieve interop-
erability, BIM software vendors developed custom 
interfaces, dependent on model view definitions 
(MVD), between design and analysis tools. Yet the 
interfaces for each tool differed, so that it was not 
possible to solve the problem of the need to create 
multiple models, of manual data entry, of editing, 
and of translating. Therefore, developments toward a 
new paradigm while working with current building 
performance tools will require semantic associations 
among different domains covering both domain-
specific attributes and instance-specific attributes 
(Sanguinetti et al. 2012).  

The expected results of this research are the elab-
oration of a) the workflows in building performance 
modeling and b) a new generation building perfor-
mance software architecture for tools that work 
within the knowledge graph environment. The soft-
ware architecture consists of: (1) a graphical user in-
terface that outlines practical benefits of automation 
of maintenance of consistency and integrity while 
modeling; (2) a logic layer that encapsulates the 



modeling principles and intelligence functions by 
semantic enrichment methods in the cloud service; 
and (3) a data layer that parses, serializes, stores, 
queries, and updates data, information, logic, and 
even design intent into knowledge-graph form and 
database via semantic web technologies. 

The suggested intelligent management and appli-
cation systems, within the three processes of seman-
tic enrichment, will be conducted intradomain for: 
(1) embedding knowledge from previous observa-
tions and interpretation of past cases; (2) determin-
ing intradomain conflicts and the topological and de-
sign intent relationships; (3) and supplying localized 
design decisions. On the other hand, the three pro-
cesses of semantic enrichment on the cloud service 
will be conducted across domains for conflicts and 
relationships, and to automate holistic building per-
formance models. 

The cloud service management and application 
systems will launch through the open database. The 
essential functions for the building performance 
models (checking consistency, accuracy, timeliness, 
and completeness) will operate on the holistic build-
ing performance ontology, implementing the three 
processes of semantic enrichment via rule-based in-
ferencing and machine learning. Thus, the new gen-
eration software architecture will emphasize the 
partnership between users and the intelligent func-
tionalities that they use. 

5 DISCUSSION 

The main argument in this work is that building per-
formance modeling can be improved through a ho-
listic, generalizable, and extensible performance on-
tology for the modeling disciplines and their 
principles that support a knowledge graph could 
platform for the data of any project. In order to ex-
tend this argument, this section examines opportuni-
ties and limitations of the novel paradigm, separat-
ing concept adaptation and implementation. 

5.1 Potential Benefits for Users 

The primary benefactors of the novel paradigm are 
the design teams in the AEC sector (architects, engi-
neers, and design managers), especially those in-
volved in building performance, since the current 
workflow in the AEC sector is expected to change 
thoroughly with the new paradigm, reducing the re-
modeling and rework necessary in the current work-
flows. While using these new-generation software 
tools, the design team will be informed of any miss-
ing building objects, attributes, and design intents 
while generating building models. Furthermore, the 
design team will receive suggestions of domain-
specific consistency and property checking while 
generating building models. 

In current BIM workflows, the information con-
tained in BIM models from different vendors is of-
ten incomplete, suffering frequently from incorrect 
object labels and misclassified objects. The next 
generation of software programs will not rely on the 
data/information quality from the models. The sug-
gested software programs will apply semantic en-
richment processes (Processes 1-3) to check and if 
necessary rebuild the object classification and object 
relationships, thus providing high resilience even 
with low-quality data. 

5.2 AEC Sector Benefits  

New generation software working on the novel plat-
form paradigm will bring practical benefits in the 
AEC sector, including: 
• An extensible and dynamic knowledge graph da-

tabase and management system, rather than file-
based common data environment (CDE), can 
support encompassing data flows to connect all 
performance domains independent of file-based 
data exchange formats.  

• The system may eliminate inaccurate, incomplete, 
or redundant information and reduce manual 
work, reducing the number of mistakes and er-
rors in the building performance models. The 
new generation software will respond to the us-
ers’ demands and intents, meanwhile resolving 
the challenges and limitations of building per-
formance modeling. It will support automated 
production of analysis models. 

• Maintaining the building performance models' key 
features and functionalities (e.g., consistency, 
accuracy, completeness, timeliness) may enable 
whole system optimization. 

5.3 Implementation 

Current technical enablers that are relevant for im-
plementation of this paradigm include graph con-
verters and graph databases. The available graph 
converters are IFCtoRDF (Pauwels 2021) and 
IFCtoLBD (Oraskari et al. 2021). Concerning graph 
databases, there are commercial products such as 
Neo4J (Neo4j Inc. 2022) and GraphDB (Ontotext 
2020). Using data compiled by the graph converters 
and databases, graph library packages such as the 
RDF library for Python (RDFLib Team 2021) can be 
used to access, query, and update the graphs. As Li 
et al. demonstrated for the case of geographic data 
(H. Li et al. 2021), this graph can be extended and 
accessed subsequently to provide input for simula-
tions implemented via web services.  



5.4 Limitations 

The limitations on the suggested novel paradigm and 
the new generation software tools that will operate 
within it are categorized into three aspects.  

Privacy and legacy software limitations. A sig-
nificant limitation is that for the full realization of 
the concept, existing software programs will need to 
be replaced by systems whose architecture allows 
them to interface directly with knowledge graph-
driven databases. The current software tools depend 
on native and proprietary data schemas as well as 
conventional database and management systems. 
Therefore, the software vendors will need to create 
their application-specific knowledge graphs, which 
leads to a comprehensive change in the software da-
tabase and management system. Some vendors may 
resist this path of development given the apparent 
lack of customer demand for change. 

Management of semantic links. If each software 
vendor creates their own knowledge graph, the cloud 
service of the holistic building performance model 
knowledge graph will have to support all of them, 
which leads to complexity and ambiguity of the 
management of semantic links. This is an ongoing 
problem even now (Pauwels et al. 2017). Besides the 
limitations on the management of semantic links and 
ontologies in the holistic performance model 
knowledge graph, the building models must be built 
via collaboration of performance disciplines. As a 
second issue, it is unclear who would take responsi-
bility for developing an open and standardized holis-
tic building performance model to support the 
knowledge graphs. Since the performance domain is 
diverse, an expert community such as IBPSA (Inter-
national Building Performance Simulation Associa-
tion. 2022) will need to set up interdomain relations 
and semantics. 

Research limitations. This research proposed a 
novel paradigm and new generation software inside 
it. As such, it is a theoretical search for a practical 
solution based on the current building performance 
disciplines' needs. The proposed paradigm's rele-
vance in practical terms will be validated through 
development and testing of prototype tools for mul-
tiple performance disciplines, with at least three do-
mains. Testing and implementing a holistic ontology 
framework for the selected subset domains will en-
sure that a sufficiently different range of domains is 
addressed and represents all (or a large majority of) 
possible domains. After proving the paradigm's rele-
vance through practical examples and showing the 
benefits, software vendors may decide to change di-
rection towards knowledge-based software architec-
tures. 

6 CONCLUSION 

In this research, the premise is that the ontological 
framework of building performance modeling can be 
improved by using a holistic, generalizable, and ex-
tensible knowledge graph in the cloud and manage-
ment systems that are applicable to all modeling dis-
ciplines and their principles.  

This novel approach shifts building performance 
models’ key features and functions to a cloud ser-
vice and implements a knowledge-graph-driven 
technique that considers design intent, modeling dis-
ciplines, and principles. Progress in this direction is 
expected to contribute a new direction for building 
performance modeling by suggesting a generalized 
holistic ontological framework for the performance 
disciplines and by providing insight into future 
cloud-based and knowledge graph-driven databases 
and management systems. With the new paradigm, 
the current workflow in the AEC sector should be 
thoroughly transformed, benefiting stakeholders by 
reducing the need for remodeling and rework in cur-
rent workflows. 

A major limitation of the concept is that new 
software systems will have to be designed that will 
interface directly with knowledge graph databases to 
realize the full benefits of the concept. Once the 
benefits of the proposed paradigm are realized, it is 
expected that it will contribute to the workflow in 
the AEC sector by affecting architects, engineers, 
and end-users. The most significant impact will like-
ly be on software vendors, who are the primary au-
dience for this research, as it may point the way to 
the nature of future BIM and building performance 
simulation and analysis software. 

Further research will need to implement and test a 
proof of concept of the novel paradigm's relevance 
by investigating, developing, and testing for a par-
ticular set of domains. In addition to researching 
technical feasibility, it will be necessary to explore 
additional aspects that impact design workflows, in-
cluding commercial, social, legal, and economic as-
pects. 
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